0=8(x^2+4x+4)(2x-5)

Simple and best practice solution for 0=8(x^2+4x+4)(2x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=8(x^2+4x+4)(2x-5) equation:


Simplifying
0 = 8(x2 + 4x + 4)(2x + -5)

Reorder the terms:
0 = 8(4 + 4x + x2)(2x + -5)

Reorder the terms:
0 = 8(4 + 4x + x2)(-5 + 2x)

Multiply (4 + 4x + x2) * (-5 + 2x)
0 = 8(4(-5 + 2x) + 4x * (-5 + 2x) + x2(-5 + 2x))
0 = 8((-5 * 4 + 2x * 4) + 4x * (-5 + 2x) + x2(-5 + 2x))
0 = 8((-20 + 8x) + 4x * (-5 + 2x) + x2(-5 + 2x))
0 = 8(-20 + 8x + (-5 * 4x + 2x * 4x) + x2(-5 + 2x))
0 = 8(-20 + 8x + (-20x + 8x2) + x2(-5 + 2x))
0 = 8(-20 + 8x + -20x + 8x2 + (-5 * x2 + 2x * x2))
0 = 8(-20 + 8x + -20x + 8x2 + (-5x2 + 2x3))

Combine like terms: 8x + -20x = -12x
0 = 8(-20 + -12x + 8x2 + -5x2 + 2x3)

Combine like terms: 8x2 + -5x2 = 3x2
0 = 8(-20 + -12x + 3x2 + 2x3)
0 = (-20 * 8 + -12x * 8 + 3x2 * 8 + 2x3 * 8)
0 = (-160 + -96x + 24x2 + 16x3)

Solving
0 = -160 + -96x + 24x2 + 16x3

Solving for variable 'x'.

Combine like terms: 0 + 160 = 160
160 + 96x + -24x2 + -16x3 = -160 + -96x + 24x2 + 16x3 + 160 + 96x + -24x2 + -16x3

Reorder the terms:
160 + 96x + -24x2 + -16x3 = -160 + 160 + -96x + 96x + 24x2 + -24x2 + 16x3 + -16x3

Combine like terms: -160 + 160 = 0
160 + 96x + -24x2 + -16x3 = 0 + -96x + 96x + 24x2 + -24x2 + 16x3 + -16x3
160 + 96x + -24x2 + -16x3 = -96x + 96x + 24x2 + -24x2 + 16x3 + -16x3

Combine like terms: -96x + 96x = 0
160 + 96x + -24x2 + -16x3 = 0 + 24x2 + -24x2 + 16x3 + -16x3
160 + 96x + -24x2 + -16x3 = 24x2 + -24x2 + 16x3 + -16x3

Combine like terms: 24x2 + -24x2 = 0
160 + 96x + -24x2 + -16x3 = 0 + 16x3 + -16x3
160 + 96x + -24x2 + -16x3 = 16x3 + -16x3

Combine like terms: 16x3 + -16x3 = 0
160 + 96x + -24x2 + -16x3 = 0

Factor out the Greatest Common Factor (GCF), '8'.
8(20 + 12x + -3x2 + -2x3) = 0

Ignore the factor 8.

Subproblem 1

Set the factor '(20 + 12x + -3x2 + -2x3)' equal to zero and attempt to solve: Simplifying 20 + 12x + -3x2 + -2x3 = 0 Solving 20 + 12x + -3x2 + -2x3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| 2/3x-7(x-1/2)=-28-x | | 6-2x=1-1x-2 | | -3/5=9/10 | | 589=301 | | 4(x-8+4)=3(x-5+3) | | 3/4x=3/12 | | 8m+2=98 | | 318000000/.3 | | (y^2)-2y=x+3 | | -35=-5x+8x | | -5a+8(1+6a)=-250 | | 270+7=493 | | 25n^2-8=-10n | | 3-(-6)-2= | | 11=x/2-7 | | 32=2m | | 2(x-6)+12=x | | 18=3/5x | | 1-1x=-9x+101 | | 2x+5=-5x-9 | | X/4-42=9x | | 6x+12x+-9-8x+10+x=0 | | y-3=2xy | | 4v+6=18 | | 2x+8(4x+5)=16x+64(32x+40) | | 9m-14=9 | | -0.7x=-21 | | 99.2/.8 | | 38+3x=50+-5x | | y+4=2x+1 | | 2x+10=x+9 | | 4(x-8+4)= |

Equations solver categories